Coverage for pyhiperta/timing.py: 100%
8 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-21 20:50 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-21 20:50 +0000
1from typing import Tuple
3import numpy as np
6def slope_intercept(peak_times: np.ndarray, longitudinals: np.ndarray, cleaning_mask) -> Tuple[np.ndarray, np.ndarray]:
7 """Computes slope, intercept by fitting a line (LSE) on the `peak_times` of each pixels along the ellipsis major axis
9 This is essentially a less robust __batched__ numpy.linalg.lstsq
11 Parameters
12 ----------
13 peak_times : np.ndarray
14 The time of maximum signal for each pixels as computed by the integration.
15 shape: ([N_batch,], N_pixels)
16 longitudinals : np.ndarray
17 The longitudinal coordinates (coordinate along the ellipsis major axis) of each pixels.
18 shape: ([N_batch,], N_pixels)
20 Returns
21 -------
22 Tuple[np.ndarray, np.ndarray]
23 Slope and intercept values for each waveform.
24 shape of each array: ([Batch,],)
25 """
26 # Compute mean and sums only where the cleaning mask is True.
27 longitudinals_mean = longitudinals.mean(axis=-1, keepdims=True, where=cleaning_mask)
28 peak_times_mean = peak_times.mean(axis=-1, keepdims=True, where=cleaning_mask)
30 slope = (cleaning_mask * (longitudinals - longitudinals_mean) * (peak_times - peak_times_mean)).sum(axis=-1) / (
31 cleaning_mask * (longitudinals - longitudinals_mean) ** 2
32 ).sum(axis=-1)
33 intercept = peak_times_mean.squeeze() - slope * longitudinals_mean.squeeze()
34 return slope, intercept